

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code :ADVANCES IN DATABASES(16CS5806)Course & Branch: M.Tech - CSE Year &Sem: I-M.Tech& I-SemRegulation: R16

<u>UNIT –I</u>

Introduction

1. Briefly explain distributed data processing	10M,L2
2. Explain distributed database system	10 M ,L2
3. Write and explain problem areas of distributed data base system	10M,L1
4. Describe overview of relational DBMS	10M,L3
5. Write and explain relational database concept	10M,L1
6. Briefly explain normalization	10M,L2
7. Explain 1^{ST} and 2^{ND} normal forms with example	10M,L2
8. Explain 3 Rd normal form with example	10M,L2
9. Explain boyce-codd normal form with example	10M,L2
10.Explain relational database languages	10M,L2

UNIT-II

Distributed DBMS Architecture, Distributed Database Design

1. Draw and explain database management system architecture	10M,L4
2. Explain architectural model for distributed DBMS	10M,L2
3. Draw distributed database management system architecture	10M,L4
4. Write and explain distributed database design steps	10M,L1
5. Write and explain design strategies	10M,L2
6. Explain distributed design issues	10M,L2
7. Write and explain fragmentation	10M,L2
8. Explain allocation methods	10M,L2
9. Explain horizontal fragmentation	10M,L2
10.Explain horizontal allocation method	10M,L2

UNIT-III

Query Processing and decomposition

1. Explain query processing with examples	10M,L2
2. Explain decomposition methods	10M,L2
3. Write the objectives of query processing	10M,L1
4. Explain query processing and decomposition	10M ,L2
5. Explain SQL queries with suitable examples	10M,L2
6. Explain DDL commands with examples	10M,L2
7. Explain DML commands with examples	10M,L2
8. Describe characterization of query processors	10M,L3
9. Explain query decomposition	10M,L2
10. Write localization of distributed data	10M,L1

UNIT-IV

Distributed query Optimization

1. Explain query optimization techniques	10M,L2
2. what are the steps in query optimization	10M,L3
3. write centralized query optimizations	10M,L1
4. write distributed query optimization algorithms	10M,L1

UNIT-V

Transaction Management, Distributed concurrency control

1.	Briefly explain transaction management	10M,L2
2.	Explain properties of transaction management	10M,L2
3.	Write and explain types of transactions	10M,L2
4.	Explain concurrency control	10M,L2
5.	Explain serializability with examples	10M,L2
6.	Write concurrency control mechanisms with examples	10M,L2
7.	Write and explain optimistic concurrency control algorithm	10M,L2
8.	Explain deadlock management	10M,L2
9.	Explain deadlock states in transaction management	10M,L2
10	. Define ACID properties with suitable examples	10M,L4

Prepared By: B RAVEENDRA NAICK, ASSOCAITE PROFESSOR, CSE DEPARTMENT.

Data Base Management Systems